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Abstract. The objective of this study was to develop a mathematical model that describes 
soil water movement and root water uptake under the conditions of combined stress of soil 
moisture and salinity. The mass transport equations of salts have been incorporated as part 
of the integrated model SWMS_2D and the soil salinity was represented by the soil 
electrical conductivity. There was good agreement between the simulated and measured 
values of the water content and salinity. The modified version of model SWMS 2D is able 
to predict the water uptake process under the combined stress of soil moisture and salinity 
and it is suitable for irrigation management in areas with scarce and low quality water 
resources. 

1 Introduction 

Actual root water uptake not only depends on the root distribution and its functioning, but also 
on soil water availability and salinity. In addition to water stress in periods of low water availability, 
root water uptake is also reduced when concentrations of soluble salts exceed plant-specific 
threshold values (Zipper et al., 2015).  In irrigated soils, particularly in arid and semiarid regions, 
plants are generally subjected to both salinity and water stress. In these regions, soil and water 
management practices are based on maintaining a favorable soil water content and salinity status in 
the root zone, thereby minimizing periods of water stress while controlling leaching to minimize 
salinity stress. 

There are two different approaches to quantify soil water extraction rate, namely the 
microscopic and the macroscopic approaches. The microscopic approach (Molz and Peterson, 1976; 
Mandri and Ronald, 1997; Askri et al., 2010) considered that radial flow towards a representative 
individual root can be represented by an infinitely long cylinder of uniform radius and water 
absorbing properties. This approach described radial flow to a single root from a cylinder of soil 
surrounding the root with boundary conditions at the root surface (inner side of the soil cylinder) 
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and the outer side of the soil cylinder. Whereas, this type of model is not practical because it is 
difficult to measure the detailed geometry of a growing root system and the water permeability of 
root varies with position along the root (Wu et al., 2015). The macroscopic approach (Feddes et al., 
1978, Homaee, et al., 2002; Kargas, et al., 2012) deals with the removal of water from the root zone 
as a whole. The flow to individual roots is ignored and the overall root system is assumed to extract 
water from each point of the root zone. While the complete insight into the physical process of root 
water uptake was not required and therefore the determination of soil and plant parameters were 
more empirical (Feddes, 1988; Zhuang et al., 2001, Lekakis et al., 2011; Rasouli et al., 2013). 

In view of these shortcomings, we induce a new reduction function for the combined water and 
salinity stress. The impact of salt built up and salinity on plant root water uptake was also evaluated. 

2 Material and Methods 

The Richard’s equations is frequently considered to govern water flow in partially saturated 
soils. In a one-dimensional vertical system, this equation is given by: 
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where h is the soil water head, C is the soil water capacity which is equal to the slope ( dhd / ) 
of the water retention curve, t is the time; z is the depth (positive downward from the soil surface), 
K is the hydraulic conductivity and Sr is the soil water extraction rate by plant root. The root 
extraction term reads: 

                max),( rr SCS                                      (2) 

in which   is the soil water content, maxrS is the maximum rate and ),( C is the reduction 

function depending on soil water content and solute concentration. It is assumes that the extraction 
term under non-stress conditions is equal to potential transpiration. Crop water storage is assumed 
negligible. A model for water-uptake under combined stress of salinity and soil moisture can be 
expressed as  
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in which pa TT , aT  and pT are the actual and potential transpiration, respectively.  the 

soil water stress factor, 1X  is the function of effective moisture content 
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Where,   is the soil water content, 0 is the lower limit soil water content(wilting point) , 

f is the threshold value of soil water content under which the transpiration decrease from the 

maximum value. For 0  , water stress factor 1X  is zero; for f  , water stress factor is 

assume to be the maximum value of 1.0. 

The salinity stress factor 2X  is the function of soil electrical conductivity 

           cECECX 2                            (5) 

When no water stress and salinity stress occurs, 1X and 2X  are equal to 1 and 0 respectively, 

Then the equation 3 yields: 
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For condition where 0  , 1X  is equal to 0. Equation 3 yields: 
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When water stress occurs without salinity stress, 2X is equal to 0. Equation 3 yields: 
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where EC and cEC  are the electrical conductivity of soil solution and the threshold electrical 

conductivity under which no salinity stress occurs. 1r , 2r , 3r and 4r are soil, crop and 

phenomenological stage-specific parameters. 

3 Results and Discussion 

A graphical representation of the soil column and the finite element mesh used for the numerical 
simulation is presented in Figure 1. The width and depth of the soil column is 15cm and 20cm, 
respectively. The root distribution zone which describes the spatial variation of the potential 
extraction term (gray area) was also shown in Figure 1. 

The initial soil moisture profile and solution concentration profile were equally distributed 
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(Nos. 51379152，51679257). 
Key  Special project of Science and Technology Department of Tibet(Z2016C01G01/07);Key 

projects of Science and Tech-nology Department of Tibet: Research and its prevention and control t
echnology on agricultural non-point source pollution in Tibe 
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